Détection de structure géométrique dans les nuages de points. (Geometric structure detection in point clouds)

نویسنده

  • Quentin Mérigot
چکیده

In this short chapter, we introduce some of the objects that will be used throughout the thesis: the distance functions, projection functions and medial axes. We survey some known result concerning the local regularity of medial axis (eg. Hausdorff dimension, rectifiability), a few of which come from the semi-concavity of the distance function. The compilation of these results complements the survey on the stability and computation of medial axes by Attali, Boissonnat and Edelsbrunner. In the second part of the chapter, we study the (d − 1)-volume and the covering numbers of the medial axis of a compact set. In general, this volume is infinite; however, the (d − 1)-volume and covering numbers of a filtered medial axis (the μ-medial axis) that is at distance greater than ε from the compact set will be explicitely bounded. The behaviour of the bound we obtain with respect to μ, ε and the covering numbers of K is optimal. Let us stress that bounding the covering numbers is much stronger than bounding the (d − 1)-volume, since we cannot disregard the lower-dimensional parts of the medial axis. This result will be used in the next chapter to give a first stability statement for projection functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jerry Tessendorf Principal Graphics Scientist Rhythm & Hues Rapporteur

Video games and visual effects are always in the need for more realistic images of natural scenes, including clouds. Traditional computer graphics methods involve high amounts of memory and computing resources which currently limits their realism and speed. In this thesis we propose new approaches for the realistic rendering of clouds in realtime. These goals are achieved using a methodology re...

متن کامل

Geometric Inference for Measures based on Distance Functions

Data often comes in the form of a point cloud sampled from an unknown compact subset of Euclidean space. The general goal of geometric inference is then to recover geometric and topological features (e.g. Betti numbers, normals) of this subset from the approximating point cloud data. In recent years, it appeared that the study of distance functions allows to address many of these questions succ...

متن کامل

فایل کامل مجلّه مطالعات زبان فرانسه دو فصلنامه علمی پژوهشی زبان فرانسه دانشکده زبانهای خارجی دانشگاه اصفهان

Tâ ÇÉÅ wx W|xâ Revue des Études de la Langue Française Revue semestrielle de la Faculté des Langues Étrangères de l'Université d'Ispahan Cinquième année, N° 8 Printemps-Eté 2013, ISSN 2008- 6571 ISSN électronique 2322-469X Cette revue est indexée dans: Ulrichsweb: global serials directory http://ulrichsweb.serialssolutions.com Doaj: Directory of Open Access Journals http://www.doaj.org ...

متن کامل

Entreposage et analyse en ligne dans les nuages avec Pig

RÉSUMÉ Les entrepôts de données et les systèmes OLAP permettent d’analyser à la volée de gros volumes de données. L’informatique dans les nuages vise à proposer des capacités de calcul et de stockage virtuellement infinies. Considérer l’analyse et l’entreposage de données au sein des nuages informatiques devient alors un enjeu majeur. Les problèmes à aborder sont ceux classiques des systèmes la...

متن کامل

Geometric Mean Curvature Lines on Surfaces Immersed in R Ronaldo Garcia and Jorge Sotomayor

Here are studied pairs of transversal foliations with singularities, defined on the Elliptic region (where the Gaussian curvature K is positive) of an oriented surface immersed in R. The leaves of the foliations are the lines of geometric mean curvature, along which the normal curvature is given by √ K, which is the geometric mean curvature of the principal curvatures k1, k2 of the immersion. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009